Bayesian Networks from the Point of View of Chain Graphs
نویسنده
چکیده
The paper gives a few arguments in favour of use of chain graphs for description of proba bilistic conditional independence structures. Every Bayesian network model can be equiva lently introduced by means of a factorization formula with respect to chain graph which is Markov equivalent to the Bayesian network. A graphical characterization of such graphs is given. The class of equivalent graphs can be represented by a distinguished graph which is called the largest chain graph. The factoriza tion formula with respect to the largest chain graph is a basis of a proposal how to represent the corresponding (discrete) probability dis tribution in a computer (i.e. 'parametrize' it). This way does not depend on the choice of a particular Bayesian network from the class of equivalent networks and seems to be the most efficient way from the point of view of memory demands. A separation criterion for reading indepen dences from a chain graph is formulated in a simpler way. It resembles the well-known d-separation criterion for Bayesian networks and can be implemented 'locally'.
منابع مشابه
Bayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model
Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...
متن کاملApplication of n-distance balanced graphs in distributing management and finding optimal logistical hubs
Optimization and reduction of costs in management of distribution and transportation of commodity are one of the main goals of many organizations. Using suitable models in supply chain in order to increase efficiency and appropriate location for support centers in logistical networks is highly important for planners and managers. Graph modeling can be used to analyze these problems and many oth...
متن کاملBayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کاملOn Separation Criterion and Recovery Algorithm for Chain Graphs
Chain graphs {CGs) give a natural unifying point of view on Markov and Bayesian net works and enlarge the potential of graphi cal models for description of conditional in dependence structures. In the paper a di rect graphical separation criterion for CGs which generalizes the d-separation criteri on for Bayesian networks is introduced (re called). It is equivalent to the classic mo _ r ...
متن کاملBayesian Estimation of Change Point in Phase One Risk Adjusted Control Charts
Use of risk adjusted control charts for monitoring patients’ surgical outcomes is now popular.These charts are developed based on considering the patient’s pre-operation risks. Change point detection is a crucial problem in statistical process control (SPC).It helpsthe managers toanalyzeroot causes of out-of-control conditions more effectively. Since the control chart signals do not necessarily...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998